FDITE69 Optical spectroscopy for photosynthesis research

(Petar Lambrev)

Description:

The course covers basic concepts, theoretical principles, and applications of optical spectroscopy in photosynthesis research. It begins with an introduction to the physical properties and treatment of electromagnetic radiation and light-matter interactions, basics of quantum mechanics and the processes of light absorption, energy transfer and charge separation from a physical and quantum mechanical perspective. In the second part of the course, modern spectroscopic methods that can be applied to photosynthesis research are introduced: steady-state absorption and fluorescence spectroscopy, fluorescence induction, polarized light spectroscopy and ultrafast time-resolved spectroscopy methods.

Topics:

Theoretical aspects

Properties of the electromagnetic radiation

Quantum mechanical description of light-matter interaction

Absorption of electromagnetic radiation

Excited-state decay

Characteristics of fluorescence emission

Exciton coupling

Excitation energy transfer

Electron transfer

Practical approaches

The generic spectrometer

Photon energy

Absorption spectroscopy

Fluorescence spectroscopy

Polarization techniques

Vibrational spectroscopy

Chlorophyll fluorescence

Time-resolved fluorescence

Pump-probe absorption spectroscopy
Kinetic modelling

Multidimensional spectroscopy

Recommended literature:

Hammes G.G.: Spectroscopy for the Biological Sciences, John Wiley & Dons, 2005

Parson W.W.: Modern Optical Spectroscopy, Springer, 2007

Roduner E et al.: Optical Spectroscopy – Fundamentals and Applications, World Scientific,

2018