Optical Wave Propagation & Metamaterials			
Course Code:		Semester:	
Credit Hours:		Pre-requisite Codes:	Electromagnetic Field Theory
Instructor:	Dr. M. Qasim Mehmood	E-mail:	qasim.mehmood@itu.edu.pk
Office:	4 th floor, Arfa Soft Tech Park	Telephone:	+923360502237
Department:	Physics & Engineering	Discipline:	Physics & Engineering
Lecture/Lab Days:	As Per Time Table	Consulting Hours:	By Appointment via Tel / Email

Reference B	ooks:
Text	1. Engineering Electromagnetics and Waves by Umran S. Inan, Aziz S. Inan, Ryan K.
Books:	Said
	2. Introduction to Optics By Frank L. Pedrotti, S.J., Leno M. Pedrotti, Leno S. Pedrotti
	3. Optics by E. Hecht and A. R. Ganesan
	4. Concise Optics Concepts, Examples, and Problems By Ajawad I. Haija, M. Z. Numan,
	W. Larry Freeman
	5. Electromagnetic Metamaterials: Transmission Line Theory And Microwave
	Applications: The Engineering Approach by Christophe Caloz and Tatsuo Itoh
	6. Electromagnetic Metamaterials and Metasurfaces: From Theory To Applications
	By Long Li, Yan Shi, Tie Jun Cui
	7. Electromagnetic Metasurfaces Theory and Applications by Karim Achouri,

Christophe Caloz

Weekly Lecture Breakdown: (Each Lecture Duration 1.5 Hours)			
Week 1:	Light Waves, Properties, and Propagation	Week 10:	Introduction to Metamaterials
Week 2:	Light Waves, Coherence, Superposition, and Interference	Week 11:	Fundamentals of Left-handed (LH) Metamaterials
Week 3:	Light Diffraction	Week 12:	Introduction to Electromagnetic Metasurface
Week 4:	Light Diffraction, Fourier Optics	Week 13:	Theory Models of Electromagnetic Metamaterials and Metasurfaces
Week 5:	Fourier Optics	Week 14:	Analysis and Design Methods of Metamaterials and Metasurfaces
Week 6:	Geometric Optics	Week 15:	Overview of Computational Electromagnetic (CEM) Techniques
Week 7:	Geometric Optics	Week 16:	Finite Difference Methods
Week 8:		Week 17:	Design and Simulation of Metamaterials and Metasurfaces on FDTD Lumerical and CST
Week 9:	Mid Term	Week 18:	Final Exam

Reference Materials	Topics	Lectures
		(Lecture Duration 1.5 Hours)
	Physical and Geometric Optics	1.5 110415)
	Light Waves, Properties, and Propagation	2
	Maxwell's Equations	_
	 Wave Equation 	
	 Types and Properties of Electromagnetic Wave 	
	Equations	
	 Electromagnetic Wave Equations in Dielectrics 	
	Photon Flux Density	
Introduction to Optics	Light Waves, Coherence, Superposition, and	2
by	Interference	
Frank L. Pedrotti, S.J.,	 Superposition of Two and Multiple Waves of 	
Leno M. Pedrotti, Leno S.	Arbitrary Phases and of a Slightly Different	
Pedrotti	Frequency: Group Velocity	
	 Young's Double-Slit Experiment 	
Optics by E. Hecht and A.	Lloyd's Mirror	
R. Ganesan	Newton's Rings	
	 Interference of Light In Thin Films 	
Concise Optics	Multiple-Beam Interference	
Concepts, Examples, and	• Fringes of Equal Inclination:	
Problems	Fizeau Fringes	
By Dry Aigured L. Haiia, M. 7	Michelson Interferometer	2
By Ajawad I. Haija, M. Z.	Light Diffraction	3
Numan, W. Larry	Single-Slit DiffractionFraunhofer Diffraction	
Freeman	Diffraction From Rectangular Apertures	
	 Double-Slit Diffraction 	
	Diffraction Gratings	
	 Angular Dispersion And Power Of A Grating 	
	 Layout And Assumptions: Obliquity Factor 	
	Fourier Optics	3
	Single-Slit Diffraction	
	 Fraunhofer Diffraction 	
	Diffraction From Rectangular Apertures	
	 Double-Slit Diffraction 	
	Diffraction Gratings	
	 Angular Dispersion And Power of a Grating 	
	 Layout And Assumptions: Obliquity Factor 	
	Geometric Optics	4
	Reflection and Refraction	
	 Image Formation via Refraction 	
	Paraxial Rays and Lenses	
	Matrix Optics for Paraxial Rays	
	Mid-Term Exam Optical Metamaterials and Metasurafecs	
	Introduction to Metamaterials	2
	 Definition of Metamaterials (MTMs) and Left- 	
	Handed (LH) MTMs	
	 Theoretical Speculation by Viktor Veselago 	
	 Experimental Demonstration of Left- 	
	Handedness	

	Further Numerical and Experimental	
Electromagnetic	Confirmations - Conventional" Backward Waves and Novelty of	
Metamaterials:	LH MTMs	
Transmission Line	 Terminology 	
Theory And Microwave	Transmission Line (TL) Approach	
Applications by	 Composite Right/Left-Handed (CRLH) MTMs 	
Christophe Caloz and	MTMs and Photonic Band-Gap (PBG) Structures	
Tatsuo Itoh	Historical "Germs" of MTMs	
Tatsuo Itoli	Fundamentals of Left-handed (LH)	2
	Metamaterials	
	Left-Handedness from Maxwell's Equations Entropy Conditions in Dispersive Media	
	Entropy Conditions in Dispersive MediaBoundary Conditions	
	 Reversal of Doppler Effect 	
	Reversal of Vavilov- Čerenkov Radiation	
	Reversal of Snell's Law: Negative Refraction	
	 Focusing by a "Flat LH Lens" 	
	 Fresnel Coefficients, 	
	 Reversal of Goos-H¨anchen Effect 	
	 Reversal of Convergence and Divergence in 	
	Convex and Concave Lenses	
	Subwavelength Diffraction	
	Introduction to Electromagnetic Metasurface	2
	Introduction	
	Features and Classifications of Electromagnetic Metamatorials (Metagurfaces)	
	Metamaterials/MetasurfacesBrief History of Electromagnetic Metamaterials/	
	Metasurfaces	
Electromagnetic	Theory Models of Electromagnetic	2
Metamaterials and	Metamaterials and Metasurfaces	_
Metasurfaces: From	 The Electrodynamics of Double Negative 	
Theory To Applications	Metamaterials	
by	 Generalized Snell's Law 	
Long Li, Yan Shi, Tie Jun	 Digital Coding Metamaterials/Metasurfaces 	
Cui	Group Theory of Metamaterials	
	Analysis and Design Methods of Metamaterials	2
	and MetasurfacesLocal Resonant Cavity Cell Model for EBG	
	Metamaterials	
	 Equivalent Medium Theory for Metamaterials 	
	 Equivalent Circuit Model for Metasurfaces 	
	 Fast Full-Wave Algorithm Simulation for Periodic 	
	Array	
Computational	Modeling and Simulation of Metamaterials and Met	
	Overview of Computational Electromagnetic	2
	(CEM) Techniques	
	 Analytical Methods The finite difference time domain (EDTD) method 	
	 The finite difference time domain (FDTD) method The method of moments (MoM) 	
	 The method of moments (MoM) Overview of other methods 	
	The finite element method The finite element method	
	 The transmission line method 	
	 The method of lines 	
-		

	Ray tracing methods	
Multiple Sources	■ The modelling process; verification and	
•	validation; accuracy, convergence consistency	
	and stability;	
	Finite Difference Methods	2
	Finite differences	2
	The lossiess cransmission fine as an 1D problem,	
	FDTD solution	
	 Obtaining wideband data using FDTD 	
	Numerical dispersion	
	Courant stability criterion	
	The 2D FDTD algorithm: formulation, sources,	
	meshing, absorbing boundary conditions	
	 The PML absorbing boundary condition 	
	 The 3D FDTD algorithm: The Yee cell 	
	Design and Simulation of Metamaterials and	3
	Metasurfaces on FDTD Lumerical and CST	
	Materials Engineering	
	 Meta-atom level design and optimization 	
	 Metamaterial/Metasurfaces-level Design and 	
	Optimization	
	Results extraction and Analysis	
	Final Exam	

Course Assessment Distribution:	
Quizez:	10 %
Assignments:	15 %
Term Project:	15%
Mid-term Exam:	20 %
Final Exam:	40.00 %